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Building a quantum system in
Quantum Composer

Extension

1 The time-independent Schrödinger equation
Remember this equation, way back in Part I?

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ. (1)

We call Equation 1 the time-dependent Schrödinger equation because Ψ can (and in the majority of
cases does) change with time. In the main exercises, you have been solving Equation 1 numerically, in
other words, using a computer algorithm that approximates the solution. Note that you never got out a
function when solving for Ψ, but rather a set of numbers plotted on a graph. The aim of this extension
exercise is to show you how to solve the equation analytically, in other words, using algebra.

In mathematics, a very common method of solving an equation is to make an educated guess at a
solution, substitute it into the equation, and use the new equation you obtain to constrain the solution in
some way. For example, consider the first order ordinary differential equation

dy

dx
+ y = x. (2)

One way we might solve this is to guess that the solution looks like y = ax+ b. We substitute this in to
obtain

a+ ax+ b = x. (3)

For this to be true, a = 1 1. Furthermore, a+ b = 0, so b = −1. Our solution is y = x− 1.
The Schrödinger equation is a bit more complicated, but the process of solving it is similar. We assume

that Ψ is of the form “some function of x only multiplied by some function of t only”.

Ψ(x, t) = ψ(x)φ(t). (4)

Substitute this into Equation 1. After a bit of algebra, we get

i~
1

φ(t)

dφ

dt
= − ~2

2m

1

ψ(x)

d2ψ

dx2
+ V (x). (5)

Now comes the most important part, so pay attention. The left hand side depends on t only, while the
right hand side depends on x only (assuming that the potential is time-independent, which it always is in
the Quantum Composer exercises you have been doing). So for the two sides to be equal, they must both
equal an expression that is independent of both x and t, in other words, a constant.

Call this constant E. Then

− ~2

2m

1

ψ

d2ψ

dx2
+ V = E. (6)

Multiply by ψ and we obtain the time-independent Schrödinger equation

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ. (7)

Equation 7, it turns out, is much easier to solve than the time-dependent Schrödinger equation.
1There is one x on the right hand side, and there are a x’s on the left hand side. Since this is an equation, a = 1.
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2 The infinite potential well
In the infinite potential well, we define

V =

{
0 0 < x < a,

∞ otherwise.
(8)

The infinite potential well is contrived, and does not exist in real life. But it is a very useful example,
because it is easy to solve analytically.

In the regions with infinite potential, the wave function does not exist because there is no way a particle
can penetrate through an infinite barrier. Imagine throwing a ball over an infinitely high wall: no matter
how much energy you give the ball, it will not go over.

And what about in the regions of zero potential? This is where Equation 7 comes in. Setting V = 0,

− ~2

2m

d2ψ

dx2
= Eψ. (9)

Equation 9 belongs to a class of equations that have been studied extensively. Just as in the simple
example in Equation 2, we guess a solution.

ψ(x) = A sin

(√
2mE

~
x

)
+B cos

(√
2mE

~
x

)
. (10)

Rationalise the solution in Equation 10 this way: differentiating sin(kx) or cos(kx) twice gives−k2 sin(x)
or −k2 cos(x). Dividing Equation 9 through by E,

− ~2

2mE

d2ψ

dx2
= ψ. (11)

This means that −k2 = −( 2mE
~2 )2, and k =

√
2mE
~ .

Try opening Exercise1.flow inQuantum Composer again, and type infinity(0,a) into the Potential
box. Can you see that the wave functions look sinusoidal?

3 Deriving the energy expression
The use of E as the constant of separation was not a random choice. E stands for energy. Knowing this,
we can derive the En ∝ n2 relationship you saw in Part II.

The key step here is that ψ(x) must be zero at both x = 0 and x = a. We already know that ψ(x) is
zero below x = 0 and above x = a. This means that, if we are not to have a wave function that jumps
abruptly at boundaries (in physics, things that jump like that rarely occur), ψ(x) must also be zero at both
x = 0 and x = a. We write

ψ(0) = 0, ψ(a) = 0. (12)

We can immediately discard the cosine term in Equation 10 because the cosine function is not zero at
x = 0, no matter what constant you slap in front of the x. We are left with

ψ(x) = A sin

(√
2mE

~
x

)
. (13)

Now that we’ve dealt with the condition at ψ(0) = 0, we can turn our attention to the second condition,
ψ(a) = 0. We know that the condition for sin(z) to be zero is

z = nπ, n = 0,±1,±2, ... (14)

Hence, substituting x = a,
√

2mEn

~
a = nπ, (15)
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En =
n2π2~2

2ma2
. (16)

Since π, ~, m, and a are constants, En ∝ n2. Try checking the values given by Equation 16 with those
provided by Quantum Composer.
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