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Probability density, expectation values, and superposition

Introduction and background
In the following exercise, we will study the superposition of eigenstates and expectation values of operators
in the harmonic oscillator potential

VSHO(x) =
1

2
mω2x2. (1)

We can write a superposition of eigenstates ψn(x) as

Ψ(x) =
∑
n

cnψn(x). (2)

The complex coefficient cn tells us ‘how much of the n-th energy eigenstate is present in the final
superposition state Ψ(x).

Recall also that the expectation value of an operator Ô is calculated by

〈Ô〉 = 〈Ψ| Ô |Ψ〉 =

∫ ∞

∞
Ψ ∗ (x)ÔΨ(x)dx. (3)

In this case, Ô could be, e.g., the position operator x̂, the momentum operator p̂ or the Hamiltonian
operator Ĥ.

Note that these operators can be time-dependent, that is, Ô = ˆO(t), so in this exercise, we are going to
explore how these quantities change under time evolution. Remember the Heisenberg equation of motion

dÔ

dt
=
i

~
[H, Ô] +

∂Ô

∂t
. (4)

If we take the expectation value everything in this equation, we arrive at Ehrenfest’s theorem,

d〈Ô〉
dt

=
i

~
〈[H, Ô]〉+

〈
∂Ô

∂t

〉
. (5)

In this way, we can mathematically describe how operators and their expectation values evolve in time.
Finally, the spread in the values that an operator can take is represented by the variance

σ2
O = 〈Ô2〉 − 〈Ô〉

2
. (6)

The square root of the variance is known as the standard deviation.

The first flowfile
There are two flowfiles in this exercise, and you will use the first of them for Exercise 1 below. This flowfile
titled:
expectation_values_and_time_dependence_1.flow, and it is described below.

The Potential node has the following expression for a harmonic oscillator potential written inside of it:
0.5*aˆ2*xˆ2, where the scalar a represents the harmonic frequency ω.

A superposition of Neigenstates = 5 eigenstates can be created using the Linear Combination node. The
complex coefficients cn in Equation (2) are entered in the different rows of the boxes listed in the node. The
left and right columns in each row represent the real and imaginary parts of the coefficients, respectively.
Upon opening the flowfile, the coefficients will be set so that c1 = c2 = 1 + 0i. If you click Normalize
output, the wavefunction will automatically be normalized, so you don’t have to worry about those pesky
square roots of 2.
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Inside the Time evolution loop, there is a Time Evolution block that solves the Schrödinger equation and
a Position Plot that displays how the wavefunction evolves in time. The Position Plot allows one to view the
real and imaginary parts of the wavefunction by checking the boxes Re(ψ) and Im(ψ), in red and blue
respectively. If you check the box labelled |ψ|2, you will see the probability density of the wavefunction
shown by the green line. If you click the box labeled 〈x〉 ± σx, you can see how the expectation value of
the position x̂ and the standard deviation σx change in time.

Exercise 1
1. First, let’s consider the initial superposition state Ψ(x, t = 0) = (ψ1(x) + ψ2(x))/

√
(2), which is the

state given in the Linear Combination node when you open the flowfile. Click the green Play button
at the top left of your screen. Observe how the wavefunction evolves in time. What changes if we
change the sign of c1 or c2?

2. What happens if we make c1 or c2 = i? What if they are both equal to i?

3. What happens to the time dynamics you change the frequency ω of the trapping potential (denoted
in Composer as a scalar labelled omega)? How does the behavior of 〈x̂〉 and ωx change as you change
ω? Can you explain what you see?

4. Here, we will make what is known as a coherent state. In order to do this, for the first 5 eigenstates,
n = 1, ..., 5, set cn = λ(n − 1)/

√
(n− 1)! where λ = 0.5. This distribution is known as a Poisson

distribution. Observe the time dynamics. Is anything special about how this wavefunction evolves in
time?

5. What happens if you double λ?

The second flowfile
Now open the second flowfile, titled:
expectation_values_and_time_dependence_2.flow, described below.

Here, you see the same Potential node and Linear Combination nodes leading to the same Time Evolution
loop. However, this Time Evolution loop has two additional Scalar Time Trace Plots that plot 〈x̂(t)〉 and
〈p̂(t)〉, or how the expectation values of the position and momentum vary in time, respectively, as described
by Equation 5.

In the following exercise, we will explore these dynamics in some more detail.

Exercise 2
1. First, let’s consider the initial superposition state Ψ(x, t = 0) = (ψ1(x) + ψ2(x))/

√
2, which is the

state given in the Linear Combination node when you open the flowfile. Click the green Play button
at the top left of your screen. Observe how the expectation values of x̂ and p̂ evolve in time. As in
Exercise 1, what changes if we change the sign of c1 or c2?

2. What happens if we make c1 or c2 = i? What if they are both equal to i?

3. How do these expectation values evolve in time if we change the value of ω?

4. How do the values of 〈x̂(t)〉 and 〈p̂(t)〉 relate to one another at any given time? Given what you know
about Heisenberg’s uncertainty principle, how should they be connected theoretically?

5. Change the potential to 0.5*omega*x^4 and repeat the above questions. We call this potential an
anharmonic oscillator. What changes? How is the harmonic oscillator different?

6. Now go back to the typical harmonic oscillator by changing the potential back to where it was when
you loaded the flowfile. Try to include more states in your Linear Combination. Can you get 〈x̂〉 to
be static, even though the wavefunction changes in time?
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7. How does the addition or subtraction of different states change how 〈x̂(t)〉 and 〈p̂(t)〉 evolve?

8. Try to link your last answer to theory by writing x̂ and p̂ as combinations of the raising and lowering
operators, then understanding how different states link together when you calculate 〈x̂〉 and 〈p̂〉.

9. Now we will build what we call an amplitude-squeezed state. Set c1 = 0.74, c2 = 0.60, c3 = 0.01, c4 =
−0.27, and c5 = −0.16. Change the position plot so that it shows 〈x̂〉 ± σx as in Exercise 1. What
happens to 〈x̂〉 and σx as a function of time? For this state, σx is small when 〈x̂〉 is large. How is this
different from the coherent state you made in Exercise 1?
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