
https://www.quatomic.com/composer/

The Correlation Amplitude

Background
This exercise will introduce you to time-dependence in Composer, but it will also illustrate a very important
concept in physics: the correlation amplitude. Basically, we will explore how a displaced Gaussian evolves
in a harmonic oscillator potential and focus on the interesting behavior that results.

The ground state of the harmonic oscillator we explored in the last section is given by a Gaussian
function (setting ~ and the particle mass m to one)

φ0(x) = Ae−ωx2/2. (1)

where A is some normalization constant. We can displace this ground state by some amount xc, and this
displaced ground state will be the initial state of our system

φD(x, xc) = Ae−ω(x−xc)
2/2. (2)

The flowfile
As before, you can set up this flowscene yourself, but if you get stuck, we have provided a flowfile that
shows you how to do it. However, we will describe here how to set the problem up yourself to help you
out a little bit. (Note that we assume that you have done the Spectrum exercise in what follows.)

To begin with, set up a harmonic oscillator potential using the Spatial Dimension, Potential, and Hamil-
tonian nodes just like you did in Problem 1 of the Spectrum exercise. The default potential in the Potential
node is a harmonic oscillator, but remember to set the value of a properly!

We can set up the initial state φD(x, xc) in two different ways. Try them both before moving on.

• Analytic method: First, we could put in the initial state analytically. Create an Analytic Wavefunction
node and enter the expression for φD(x, xc) as given in Eq. (2). To get an exponential in Composer,
use the command exp(), and imaginary numbers are just represented by i. What about normal-
ization? If you tick the Normalize output box, the output wavefunction is already normalized for
you.

• Numeric method: In order to numerically create the initial state, you can create a second harmonic
potential that is centered on xc, that is V (x, xc) = ω2(x− xc)2/2. The ground state of this potential
is exactly φD(x, xc). In order to do this in Composer, you have to create a new set of Potential,
Hamiltonian, and Spectrum nodes. Enter the displaced potential into the new Potential node and
connect everything up as in the Spectrum exercise. In order to get the ground state out of the
Spectrum node, insert a Linear Combination node and wire it to the output of the spectrum node.
The default behavior of the Linear Combination node is to give the ground state of the system, which
in this case is exactly what we need.

You should also verify that these two approaches indeed give the same result. To do so, insert a Fidelity
node into Composer and wire the two versions of φD(x, xc) to the Fidelity node. Given two states ψ and
φ, the Fidelity node calculates | 〈φ|ψ〉 |2, which should be 1 if you did everything properly in Composer.

Now we are ready for time evolution. The Time Evolution node takes a single step (of length ∆t) in
time, but we want to take many such steps. To do this, we can create a For Loop scope in Composer (found
under the Misc category). Then, we can put the Time Evolution node inside the For Loop scope. We can
connect the Hamiltonian, Potential, and wave function nodes to the scope by dragging them to the scope.
You will see boundary nodes created as you drag wires from those nodes into the scope. From there, you
can hook up the Time Evolution node and anything else placed inside the scope.
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To set up time evolution, you need to create three Scalar nodes and connect them to the For Loop
scope. These three scalars define the loop conditions as in other programming languages; they specify the
starting time value (usually zero), the ending time value, and the increment dt. In order to get the Time
Evolution node to work properly, you will need to create a boundary node that connects the increment dt
through the For Loop scope to the Time Evolution node.

Now you should have everything you need to connect the Time Evolution node properly. In this way, we
can step through from some initial time to a final time in steps of dt and explore the quantum dynamics
that happen in this time. In particular, we will explore how the wavefunction φ(x, t) evolves in time from
its initial state φ(x, 0) = φD(x, xc).

Problem 1
We will analyze this problem in two ways. First, in order to see what is going on, create a Position Plot
and place it in the For Loop scope. If you attach the output of the Potential boundary node and the Time
Evolution node to this plot, you can viewwhat is going on in real time. Press the Play button and observe the
wavefunction dynamics on the Position Plot node. Describe qualitatively the motion of the wavefunction.

Problem 2
This is very qualitative, though, so to be more quantitative, create a Fidelity node and place it in the
scope. By wiring the initial state φD(x, xc) from its boundary node to one input of the Fidelity node and
wiring the wavefunction output from the Time Evolution node, we can calculate a quantity known as the
correlation amplitude that measures the orthogonality of a time-evolved quantum state with respect to
its initial state. For more information, see Chapter 2 of the second edition of Sakurai and Napolitano’s
quantum mechanics book.

In order to visualize this quantity, create a Scalar Time Trace Plot and put it inside the For Loop scope.
Attach the output of the For Loop (labelled by i) and the output of the Fidelity node to the Scalar Time
Trace Plot. Now, when you press play, you should see how the correlation amplitude changes as a function
of time.

You should see a periodic structure in time. Argue why this happens.
Now vary the amplitude of themotion by changing xc as well as the harmonic frequency ω. In particular,

describe what parameters in the problem you need to change to change this structure from being more
sinusoidal to being more comb-like. What parameters control the frequency of the periodic structure?

Problem 3
Set up the system form Problem 2 so that the structure of the correlation amplitude plot is comb-like. In
these cases, one can describe two time scales:

• The decoherence time where the correlation amplitude has dropped significantly from unity and
• the revival time defining the amount of time it takes the correlation amplitude to return to unity.
How do these timescales depend on xc and ω? Note that the initial state φ(x, 0) = φD(x, xc) is a

linear combination of N energy eigenstates of the harmonic oscillator. As we increase xc, we are actually
increasing the amount of energy that we put into the harmonic oscillator, so the number of eigenstates
N that we need to accurately describe φ(x, 0) increases. Can you say anything about the how the two
timescales above vary with N?

Problem 4
If you change the potential to be anharmonic (for example, the quartic ax4 potential), do you still see the
same behavior? Why or why not?
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